If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12j^2+11j+2=0
a = 12; b = 11; c = +2;
Δ = b2-4ac
Δ = 112-4·12·2
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-5}{2*12}=\frac{-16}{24} =-2/3 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+5}{2*12}=\frac{-6}{24} =-1/4 $
| 2d+d+2d-3=2 | | 17b+b+2b-15b=10 | | 2z+2z=-8 | | -18u+18u-7u-16u+17u=6 | | 7u-12u+4u=-17 | | 15z-15z+4z-z-z=16 | | 9s+2s-3s-4s-3s=18 | | 2a-2a+5a+5a=20 | | H+3h=16 | | A=2x+3(4x^2-5x+6) | | 20t-18t=6 | | 16t-6t=10 | | 6=y÷5 | | 6/5(x+7/22)=15 | | 3.2x=25.62. | | 4x-11=3x+31 | | 2/3a+1/2=31/2= | | -45q+10q+34q+7=34 | | 22w-9w+2w+2w-7w=40 | | 31m-28m=27 | | 18h-11h+10h+5h-10h-4=8 | | -16r+5r-12=-45 | | 18t+9t+11t-12t-9t=17 | | 2k+2k-2k+k-3=9 | | 10k-10k+5k-3k=16 | | 44m+-3m+-19m-15m=-35 | | 5s+2s+36s=-43 | | 6u-4u+u-u+2u=20 | | -4r+7r-3r+20r=-20 | | 3t+3t+2t-7t+2t=9 | | 3k-2k-k+2k=18 | | 9x+2x-3x-4x+3x=14 |